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Abstract

Fractional Fourier transform (FrFT) is a generaliza-
tion of the ordinary Fourier transform. In this ex-
tended abstract, we discuss tensor network enabled
method to accelerate the numerical calculation of
discrete FrFT, along other numerical and optical
realizations. Also we discuss how the use of the
proposed FrFT approach extends to optics, signal
processing and differential equations, such as the
Schrödinger equation.

1 Introduction
Fractional Fourier transform (FrFT) is the fractional power of
the Fourier transform with an order parameter a. FrFT is of
utility in every area that ordinary Fourier transform has shown
its capability, such as signal and image processing and time-
varying differential equations [7; 9; 13]. It is also solution
to important differential equations, such as the Schrödinger
equation. We now define the ath order FrFT fa(u) through
the following linear integral transform:

fa(u) =

∫
Ka(u, v)f(v)dv, (1)

where

Ka(u, v) = Aφexp[ιπ(cotφu2)− 2cscφuv + cotφv2], (2)

and
φ =

aπ

2
(3)

Aφ =
√

1− ιcotφ (4)

Unfortunately, the above defining integral can be rarely
evaluated analytically[3; 5]. Both numerical integrations of
quadratic exponentials and evaluation with spectral decom-
position of the kernel could be expected to cost quadratic
computational complexity O

(
N2
)
, where N is the time-

bandwidth product of the input.
A preferred method, fast digital computation of fractional

Fourier transform, was proposed in [8], without direct com-
putation of Fresnel integrals. The samples of the transformed

function are obtained in terms of the samples of the original
function, and the discrete form of FrFT is therefore given as

Faf(
m

2∆x
) =

Aφ
2∆x

N∑
n=−N

e
ιπ(α( m

2∆x
2−2β m∗n

(2δx)2
))+α( n

2∆x )
2

f(
n

2∆x
)

.

(5)

To avoid the complexity O
(
N2
)
, in [8] Eq. (5) is con-

verted into the summation of the convolution of eιπβ(
n
2π

2) and
the chirp modulated function using some algebraic manipula-
tions. With convolution computed with FFT, the overall com-
plexity isO(N logN). Furthermore, the authors showed that
the samples of the continuous time fractional Fourier trans-
form of a function can be approximately evaluated in terms
of the samples of the original function in O

(
N2
)

time.
However, the oversampling of the continuous FrFT due

to the ineffectiveness of Nyquist sampling criterion [5], will
give a vector dimension so high that, we cannot afford com-
plexity of O(N logN) in such situation. As for arbitrarily
large discrete Fourier Transform, performing FFT is difficult
for parallel processors for the reason of memory-bandwidth
limitation, the challenge is even bigger in the case of FrFT
[4]. Thus we propose to use tensor network to approximate
the signal with fewer parameters.

Tensor networks enable a numerically reliable way to
tackle the high-dimensional issue of the problem. As a special
case of them, tensor-train (TT) [2] is able to represent high-
dimensional tensor by a collection of smaller cores. Lever-
aging the promising expressive power of TT, we apply it to
the proposed methods, in which TT is used to reduce the cal-
culation with respect to Hadamard products. It is expected
that the imposed TT format can further accelerate the digital
computation of FrFT.

2 Methodology
In this work, we follow the study in [8] yet apply the tensor
train (TT) [2] to further accelerate the computation of dis-
crete fractional Fourier transform (frFT). Specifically, recall
the formulas about “Method I” in [8]:

fa =
(
DΛHlpΛJ

)
f , (6)



where f , fa ∈ CN denotes the input and output vector over
the complex linear space, respectively. In Eq. (6), D and
J are matrices representing the decimation and interpolation
operations, Λ denotes a diagonal matrix that corresponds to
chirp multiplication, and Hlo corresponds to the convolu-
tional operation.

Ignoring the decimation and interpolation operations for
brevity, we find from Eq. (6) that the computation of FrFT
consists of two aspects: (a) element-wise multiplication by
given chirp signals; and (b) a convolution by Hlo . Note
that in the vanilla method the complexity for the first as-
pect is equal to O(N), while the complexity for (b) equals
O(N logN) because of FFT. However, the linear complexity
O(N) is also unacceptable when the size N is large. In this
case, we need to take the acceleration for both (a) and (b) into
account.

To accelerate the aspect (a), i.e., multiplication by a chirp
signal, we reformulate the computation as a Hadamard prod-
uct of two high-order tensors, which can be decomposed into
low-rank tensor-train (TT) format. Assuming the vector v
containing the diagonal entries of Λ. Denote by f and v the
pth-order tensorized forms by rank-r TT format. Thus, the
Hadamard product of f and v can be obtained by directly
computing the partial Kronecker product of their core ten-
sors [6]. Specifically,

f⊗v =
(
f (1) � v(1)

)
×1
(
f (2) � v(2)

)
×1· · ·×1

(
f (p) � v(p)

)
,

(7)
where ⊗,� and ×1 denote the Hadamard product, partial
Kronecker product and tensor contraction of two tensors, re-
spectively. f (i) and v(i), i ∈ [p] denotes the core tensors of
f and v, respectively. Note that the TT-rank for the above
Hadamard product representation is equal to r2. Hence the
computation of Hadamard product in FrFT can be reduced
when the rank r is small. As for the convolution aspect in
Eq. (6), we apply the result in [12] to accelerate the required
convolution operations, which is more efficient than the fast
Fourier transform (FFT) method used in [8]. But it needs to
be known that there exists approximation when using tensor
networks including TT. Therefore, the corresponding approx-
imation analysis is essential for this work in the future.

3 Go beyond digital approaches?
Another possible approach to overcome the limiting
O(N logN) despite the high dimensionality is through opti-
cal implementation, departing from digital electronic system.
Continual FrFT depicts the propagation of light. As light
propagates, its distribution evolves through fractional trans-
forms of increasing orders, passing through ordinary Fourier
Transform[10; 11]. Optical realizations of discrete Fractional
Fourier Transform can be realized by both classical and quan-
tum optical systems presented in [14]. Digital computation of
FrFT is used for comparison. Optical realization is attractive
in its natural yield of O(N), however for now, the precision
and accuracy are not yet there. Thus, tensor network is a
practical approach in learning fractional Fourier Transforms
and bettering wave simulations based on Fresnel diffraction
theory in [1; 11].
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